ILUM: A Multi-Elimination ILU Preconditioner for General Sparse Matrices

نویسنده

  • Yousef Saad
چکیده

Standard preconditioning techniques based on incomplete LU (ILU) factorizations offer a limited degree of parallelism, in general. A few of the alternatives advocated so far consist of either using some form of polynomial preconditioning, or applying the usual ILU factorization to a matrix obtained from a multicolor ordering. In this paper we present an incomplete factorization technique based on independent set orderings and multicoloring. We note that in order to improve robustness, it is necessary to allow the preconditioner to have an arbitrarily high accuracy, as is done with ILUs based on threshold techniques. The ILUM factorization described in this paper is in this category. It can be viewed as a multifrontal version a Gaussian elimination procedure with threshold dropping which has a high degree of potential parallelism. The emphasis is on methods that deal speciically with general unstructured sparse matrices such as those arising from nite element methods on unstructured meshes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagonal threshold techniques in robust multi-level ILU preconditioners for general sparse linear systems

This paper introduces techniques based on diagonal threshold tolerance when developing multi-elimination and multi-level incomplete LU (ILUM) factorization precondi-tioners for solving general sparse linear systems. Existing heuristics solely based on the adjacency graph of the matrices have been used to nd independent sets and are not robust for matrices arising from certain applications in wh...

متن کامل

BILUM: Block Versions of Multielimination and Multilevel ILU Preconditioner for General Sparse Linear Systems

We introduce block versions of the multielimination incomplete LU (ILUM) factorization preconditioning technique for solving general sparse unstructured linear systems. These preconditioners have a multilevel structure and, for certain types of problems, may exhibit properties that are typically enjoyed by multigrid methods. Several heuristic strategies for forming blocks of independent sets ar...

متن کامل

An approximate cyclic reduction multilevel preconditioner for general sparse matrices

We discuss an iterative method for solving large sparse systems of equations. A hybrid method is introduced which uses ideas both from ILU preconditioning and from multigrid. The resulting preconditioning technique requires the matrix only. A multilevel structure is obtained by using maximal independent sets for graph coarsening. For Schur complement approximation on coarser graphs an incomplet...

متن کامل

Multi-Elimination ILU Preconditioners on GPUs

Iterative solvers for sparse linear systems often benefit from using preconditioners. While there are implementations for many iterative methods that leverage the computing power of accelerators, porting the latest developments in preconditioners to accelerators has been challenging. In this paper we develop a selfadaptive multi-elimination preconditioner for graphics processing units (GPUs). T...

متن کامل

The inverse fast multipole method: using a fast approximate direct solver as a preconditioner for dense linear systems

Although some preconditioners are available for solving dense linear systems, there are still many matrices for which preconditioners are lacking, in particular in cases where the size of the matrix N becomes very large. Examples of preconditioners include ILU preconditioners that sparsify the matrix based on some threshold, algebraic multigrid, and specialized preconditioners, e.g., Calderón a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 17  شماره 

صفحات  -

تاریخ انتشار 1996